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INMTRODUCTION

Problems on Diophantine approximations with exponential functions

form one of the sources for the material presented in this monograph.

Let g > 2 be a natural number. Let a be a real number, 0 < a < 1.

Let us consider the sequence of fractions (agXJ, x - 1, 2, ... . We

let 6 be an interval on the segment (01], and 161 its length. We let

N P(6) be the number of fractions Cagx}, x - 1, 2, ... , P lying in the

interval 6. We shall say that a sequence of fractions (Ogx}, x - 1,

2, ..., is uniformly distributed on [01] if the relationship

is valid for any interval 6.

Let us consider the infinite sequence consisting of the terms 0,

1, ... , g- i,

a. as, .. (1)

We select a natural number a and write a sequence of a-tuples

0 &, as ... Q 0 ,8 a .. a , .,)(,,, .. ,,s+ ,)... ( 2 )

Let A be any fixed a-tuple consisting of the terms 0, 1 ... ,

g - 1. We let Np(a) be the number of times the a-tuple a is encountered

prior to the Pth term of the Sequence (2).

We shall call the sequence (1) a normal sequence if

for any natural number a and any a-tuple.

We decompose a into an infinite fraction written to the base

a(3)
1-1
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A well-known theorem ([13, page 233) states: a uniform distribu-

tion of the fractions (cag'), x = 1, 2, .... on the segment [013 is

equivalent to the normality of the sequence

a,, a,, a .... (4)

Problems of Diophantine approximations with exponential functions

have been the subject of careful study. One of the first results to

appear was the theorem stating that with respect to the Lebesque

measure for almost all numbers a, 0 < a < 1, the sequence of fractions

(fgx) x - 1, 2... is uniformly distributed on the segment (01] (see

[2]). Thus the existence of normal sequences of digits was established.

Borel took a similar approach. Borel (3], page 197) called a

real number a, 0 < a < 1 weakly normal with respect to a base j (I

have deliberately translated "simplement normal" as weakly normal) if

the sequence

au as. a.,.•.•.

obtained by decomposing a into an infinite fraction written to base

a a (al/g) + (a /g ) + ... , has the property that each of the terms

appearing In it occurs with an asymptotic frequene equal to 1/g.

Moreover, Borel calls a number a absolutely normal if it is weakly

normal with respect to every natural base 1 larger than unity.

On the basis of measure theory, Borel established the existence

of absolutely normal numbers.

In S6 of the present monograph, it is proved that an absolutely

normal number a possesses the property that no matter what natural

base I Is used in the decomposition of a,

£ . ir

the -,uq ionce a1 , a2 , ... will be a normal sequence and, consequently,

for a.,:r naturol 4; > 2 the fractions (agx), x - 1, 2, .. o, will be

normAlly distributed.

-2-
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In our monograph, the emphasis has been shifted from problems

involving the distribution of fractional portions of an exponential

function to the normal sequences.

Problems associated with the use of the words "table of random

numbers" or "table of pseudorandom numbers" also furnish some of the

material discussed in this monograph. The discussion contains the

stipulation that we are speaking of a table that has no bound in one

direction, i.e., we are concerned with an infinite sequence of num-

bers.

Certain authors do not define these words when they use them.

These authors include persons concerned with the practical utiliza-

tion of such tables. Kendall and Smith ([4], page 167) in an article

concerned with tests for checking numerical sequences for "randomness"

write that "... for the purposes of this article, the logical aspect

has been deemphasized... ." In his report, Steinhaus (5] notes that

the words "randoh sequence" are in daily use by statisticians, al-

though they do not define these words. In particular, such lack of

precision may be found in several studies dealing with the Monte

Carlo method ((6] for example).

We find a desire to employ these words precisely In Venn (7] who

is of the opinion that "randomness" should be defined In terms of

frequency.

Mises follows Venn ((8], page 28). Hises has Introduced the

word collective. A collective is defined by two conditions (18], page

31).

1. The relative ftequencies of any tenm must have definite

limiting values.

2. The limiting frequency value of a term "should remain In-

variant if any portion of the sequence is arbitrarily selected anc

-TD-T:-62-1367/+2 - 3 -



Just this portion is then examined" (requirement of collective irregu-

larity).

The formulation of Mises' second condition is not clear. To see

how to give Mises' hints a precise meaning, see (9], page 218, [103,

and [60].

Some authors departed from Mises ' program to isolate subsequences:

they remained on the path described by Venn and grouped terms in the

sequence, studying their distribution. In particular, this was the

approach used by Copeland [11] who introduced the concept of the

admissible number (see §i1), by Reichenbach, who introduced a concept

identical with the concept of the admissible number (61], by A.G.

Postnikov and I.I. Pyatetsliy [12], who introduced the concept of a

Bernoulli-normal sequence.

Let there be given two positive numbers p and , such that p + q -

- 1. Consider the infinite sequence composed of the symbols 0 and 1,

4,, s... (5)

Let a be any natural number. We write sequence (5) as a "caterpillar."

Let a - (81... 68) be any a-tuple consisting of the symbols 0 and 1.

We let Np(A) be the number of appearances of the tuple A prior to the

Pth term of Sequence (6). We call Sequence (5) a Bernoulli-normal

sequence of symbols if for any natural a and any s-tuple,

liM ,Np ()M q-,

where is the number of ones among the symbols of A - (61... 8a).

The strong law of large numbers for stationary random sequences

(see (133, page 417) permits us to establish, in particular, this

theorem.

Theorem. Let an unlimited number of independent trials be carried

-4-
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out; for each trial the event designated by the symbol 1 has probabil-

ity p, while the event designated by the symbol 0 has probability q.

With probability unity, the sequence of outcomes will be Bernoulli-

normal.

This theorem, in particular, establishes the existence of

Bernoulli-normal sequences of symbols.

In §11 it is proved that the concepts of admissible number and

Bernoulli-normal sequence of symbols are equivalent. The introduction

of the concept of Bernoulli-normal sequences while making more precise

the use of the term "table of pseudorandom numbers" is Justified by

the fact that such sequences of numbers (or more general sequences)

are clearly sufficient for the construction of a numerical method of

analysis similar to the Monte Carlo method, but yielding a reliable

error estimate (see (1I]).

The reader will find additional material on the problem of tables

of random numbers in the Supplement(1).

The concept of a sequence fully distributed with respect to a

function F(x) represents a generalization of the concept of a normal

sequence of symbols and the concept of a Bernoulli-normal sequence of

symbols.

Let there be given a distribution function F(x). Consider the

Infinite sequence of real numbers

.... (7)

We choose any natural number a and any system A - (Alp *'" an) o0

intervals Ll - (albl ), "'' s - (asb.), whose end points are points

of continuity for the function F(X). We form the line

... • as . • (8)

and let Np(A) be the number of tuples prior to the Pth term of Seqv

(8) in which the first component belongs to A1, the second to "V.

-r



and the sth to As . We say that Sequence (7) is completely distributed

with respect to the function F(x) if for any s and any system of inter-

vals A the asymptotic relationship

11M- 7- . (F (bl) - F (at)) .. .(Fb,-a).()

is valid.

A special case of this concept - the concept of a completely uni-

formly distributed sequence in which F(x) = x, 0 < x < 1 was intro-

duced by N.M. Korobov [1] (in another form).

The concept of a normal sequence of symbols is obtained from this

general concept when the sequence consists of the numbers 0, 1,

g - 1, and the distribution F(x) equals

o O<z<oI

F(x)- I<X< 2_

1 i~z.

The concept of a Bernoulli-normal sequence of symbols Is obtained

from this concept when the sequence consists of the numbers 0 and 1,

and the distribution function P(x) equals
0 X<O'

F(x)m q OX<1

For any distribution function F(x) there exists a sequence that

is completely distributed over the function F(x). This follows from

the strong law of large numbers for stationary random sequences (113],

page 417), which in this special case yields the following generaliza-

tion of Olivenko's theorem ((15], page 328).

Theorem. Let the random variable I have a distribution function

1(x). Let us take an infinite samnple of this random variables

fto fib ... , et.

This seluence is completely distributed with respect to the funo-

-6-



tion F(x) with probability equal to unity.

I next introduce a concept broader than the concept of a sequene

completely distributed over the function F(x).

Let there be given a random sequence stationary in the narrow

sense, i.e., a sequence of random variables

Ell Ell .... (10)

such that for any set of natural numbers n1 < n2 < ns , any set of

intervals A1, A2, ..., As on the real line, and any natural n

P cc" E A,... Z., E As,)- P (I..+. E E,. .. , E A.)

(P is the probability).

We assume that Sequence (10) is metrically transitive (see (133,

page 410).

Let there bt given the infinite sequence of real numbers

Let us take any natural number s and any system A - (A I , ... , As ) of

s intervals on the real line. We write

(,,,,.. •,)(,,,. •. .. .. (12)

and let Np(A) be the number of times the s-tuple in which

is encountered prior to the Pth term of Sequence (12).

The infinite Sequence (11) is called a normal realization of a

stationary random sequence (the term was proposed by A. N. Kolmogorov)

if for any natural a and any system of intervals A - (A, ... , As)

the equality

I'm."--AF - " op  t As. ... . t( A.). (13)

is valid.

On the basis of the strong law of large numbers for stationary

random cequences (see 113], page 417) a realization of a metrically

tran,31 Ive stationary random sequence will be normal with probabi

-7-



equal to unity.

The problem 6f constructing normal realizations of stationary

random processes by arithmetic means is of interest. A sequence con-

structed by arithmetic means is called a sequence given with the aid

of a primitive recursion function.

Sierpinski [16] dealt with an effective definition of absolutely

normal numbers. Lebesgue's study [17] belongs to this group of prob-

lems.

Champernowne [18] constructed a normal sequence of symbols (he

constructed a Bernoulli-normal sequence with p - q - 1/2, and g - 2).

Other methods for constructing normal sequences of symbols have been

given by Copeland and Erd8s [50] and Davenport and Erd8s (51].

The argument used to prove that a sequence written by Champer-

nowne's method is a normal sequence of symbols is quite complicated.

A.G. Postnikov [19] has noted that the argument is simplified con-

siderably if the following criteria established by I.I. Pyatetakly [20]

are used.

Theorem. Let there be a sequence consisting of the symbols

0. 1.. ;- - ,

a,. a. (14).

such that there exists a constant C > 0 such that for any natural

number a and any s-tuple

Then Sequence (114) is a normal sequence of symbols.

A.G. Postnikov and l.I. Pyatetskly [123 have extended Chaver-

nowne's method and have constructed a Bernoulli-normal sequence of

symbola for arbitrary R. Here a theorem similar to the criterion

mwntioncd ab~ve was used.

-8-



In like manner, A.G. Postnikov and 1.I. Pyatetskiy (21] con-

structed a normal realization of a very simple stationary Markov

chain.

Finally, A.G. Postnikov and I.I. Pyatetskiy [21] also constructed

the normal realization of a process corresponding to a continued frac-

tion.

N.M. Korobov [1] has suggested a method for constructing normal

sequences of symbols* that is based on the utilization of.. normal

periodic systems (the concept of normal periodic systems was evidently

first introduced by Martin (22]. Yu.N. Shakhov [24] used a generaliza-

tion of this concept suggested by N.M. Korobov [23) to solve the

problem of constructing a normal realization of a very simple Markov

chain (Yu.N. Shakhov imposes stronger limitations on the transition

probabilities than are imposed in [21]). We shall not be concerned

with the method of normal periodic systems in this monograph.

N.M. Korobov [1, 25) used different methods to construct complete-

ly uniformly distributed sequences. L.P. Starchenko [27] suocoaded in

constructing a completely uniformly distributed sequence.

With the aid of a completely uniformly distributed sequence, N.M.

Korobov solved the problem of constructing a normal sequence of sym-

bols (1), and gave a multidimensional generalization of this problem

(25). As we shall show in this monograph (S17) a completely uniform-

ly distributed sequence may be used to construct a sequence that is

completely distributed with respect to a function F(x).**

The aim of the present study is to examine a portion of the ma-

terial that has accumulated In this rield from the viewpoint mentioned

above.

I wish to thank all those who helped me in this work.

-9-



§1. Normal Sequence of Symbols

Consider an infinite sequence composed of the terms 0, 1, ... ,

g - 1
. , ,. U.... (1)

We take any natural number a and construct a sequence of s-tuples
€(902. .. IS) (3:38. &- +1) ..•. ( P:+L.. S +' --1... (2)

We call Sequence (2) a caterpillar (of rank s) of Sequence (1).

Let a - (61... 6s) be any s-tuple (we shall also use the word combina-

tion) consisting of the symbols 0, 1, ... , g - 1. We let Np(, A) or

Np(A) be the number of occurrences of the 9-tuple A prior to the Pth

term of Sequence (2).

Definition. We call Sequence (1) a normal sequence of symbols if

for any natural number a and any s-tuple a the limiting relationship

P-0

Is satisfied.

12. Champernowne's Example of a Normal Sequence of Terms

Following Champernowne (18] let us construct a normal sequence of

symbols.

We let sr be a sequence consisting of all r-digit numbers written

In the A scale; here we also consider a combination of symbols begin-

ning with a zero to be an r-digit number. We take the numbers in their

natural order. For example where g -

S, M 0'1
SI- 00'01'10'1.
S.- 000'001-010-011-1001019 i10' 11

................................................

In writing the r e will place apostrophes between the r-4igit

numbers, as shown. Let us prove that the sequence

- -
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is normal (since ar is a group of terms, and not a single term, the

notation is symbolic). We must show that each p-digit combination of

symbols (p is fixed) aP in the caterpillar of Sequence (1) is en-

countered with an asymptotic frequency 1/g p .

We let:

Sr be the sequence a1 2 . . . st;

xr be the number of base-g terms in sr;

Xr be the number of base-g terms in Sr;

gr be the number of appearances of Ap in s;

Gr be the number of appearances of AP in Sr;.

gr(x) be the number of appearances of ap among the first x terms

in st;

G(x) be the number of appearances of a among the first z terms

of Sequence (i).

Let a 88(62... )

We must show that

If AP enters into a sequence ar so that apostrophes do not

separate its terms, we shall say that AP enters undivided; if an

apostrophe separates the terms of AP we shall then say that AP enters

divided. For example, when g - 2, A3 - (101) enters 53 undivided in

100' 101' 110' and divided in 110' 111.

If r < p, Ap cannot be contained undivided in sr. If r > p then

ap is contained undivided in or exactly (r - p + 1) gr "P times. Ac-

tually, there are r - p + 1 ways in which AP may enter undivided into

at The first term of Ap may be the first term of an r--diglt number,

the secured term, etc. If we select a position for & . we may take all_

the remiining r - p terms arbitrarily. Thus a Is encountered in r'

- 11 -



a combination undivided by apostrophes exactly (r -.p + 1) 5ro times.

What is more, or contains gr apostrophes. When an apostrophe is given,

it cannot separate more than p different A . As a result, no a di-
p p

vided more than pr times can be found in sr . Thus

g,-(-p + ')#,-+ 0(r),

where r-..m.

But

X, - rg'.

.Consequently

Moreover

0,- + O). X,- Z.

Thus

0- + Olx,)

Let us evaluate gr(x). We assume that x is found in the number

'pr-lpr-2.. p1 po of sequence 5r' It is clear that

#-.

We recall that Ap in any r-digit number or may occupy r - p + 1 dif-

ferent positions. We let grk(x) be the number of appearanaes of in

undivided form among the first x term of or in a position such that

the first term of A0 coincides with the kth digit of the number. If

k > r - p + 1 such a position does not exist and grk(Z) - 0. We shall

prove that where k < r - p + 1
g(x) - g,-..a-,t .4..a,-.u +.,)o 0 (V (1

(for t.,? case k - 1, the sum vanishes).

The structure of an r-digit number a in which the first term of

- 12
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a coincides with the kth digit of this number may be represented az

follows:

-- termJ i ' " r-p + 1-k t m ,

We now count these numbers up to (and including) the number

- 2.. . • P P- 4 k 1 )- , P ' - ... P -. - , | P "

k-lterms p terms ;-p+I-' kterm.d

1) if pr -1  + , + .. + (k--) > 8'-1 + 60-2 +

+ ... + 8 it is evident that the quantity sought will equal the amount
p

of these numbers up to and including the number

It is clear that the last r - p + 1 - k terms may be taken ar-

bitrarily. The first k - 1 terms may be selected in

e--I..(".h i + 1
t.-t-1)-

ways. Thus in this case the quantity desired will equal

2) If p1rge- + p gp-2 + ... + Pr-(kp-.) < 61P-a, + 629 ' +

+ ... 6P, the desired quantity will equal the amount of these numbers

up to and Includng the number

*NP-' P- l - *..-. I...g- r.

Thus in this case the number sought will equal

'-1
t-,-t h -t-s '

3) If p*_ l + pr-k- p-2 + ... + P-(k+P-l) " 6lgp- + "'" +

6 the quantity of these numbers will equal the number of numbers up

to
.,-4 ,,f.P ,) -& I8. ....- S I.."- I

plus an amount not exceeding gr- (k+P'l) since not all combinations

may enter into the last r - (k + p - 1) terms. Thus, in all cases

- 13 -



Moreover

10 ( -0+ '-1 f- + -Sg,,()- pj'-+0. ,,--,*
h-I -I tb--1) h-a

- pe-(t + I- + 0 e)
t-0

In view of the fact that there are no more than O( e ) divided

Ar" we obtain

But
X-r PW + r.

x~ -gm-r p.g'+k'

[in view of the convergence of the series 7 .
911

Thus

Let the zth terum of Sequence (1) be the ytterm In or Then

G(X- , -,- +M , + OM QrX. 00

Hence

a .+ O '" +

which has to be proved.

h14



§3. Application to Uniform Distribution of Fractional Parts of an

Exponen ial Funct.on

Let g > 2 be an integer, and a a real number.

Let us examine the sequence of fractions (agX), x - 1, 2, ... , P,

Let a be some half-interval on the segment [01], mes 6 the

length of this half interval. Let

+(1)

be a decomposition of a written to base _ (we assume that a is irra-

tional, and thus the base-g expansion is uniquely determined.

Theorem 1. A necessary and sufficient condition for the fraction

(mgX) to lie on a half interval of the form [L_-+1) where a is any

integer > 1, anda i s an integer, 0 <a < -o lie 1, ta 6 1Ks-1 + ... +

+ 68, (0< 6 _9 c - 1), is the presence of the term 6I ... 65) at the

xth position in the caterpillar of rank s of the sequence s uu... (2)

Proof

where 0 < 9 < 1. Thus

We lot Np(6) be the number of fractions among the (ax), x - 1,

2, ... , P, lying within 6. We say that the sequence of fractions toe),

x - 1, 2, ... , is uniformly distributed on the segment [01] if no

matter what half Interval 6 on [01] we choose the number Np(6) satis-

ties the asymptotic relationship

11ra P M, ma t,

when P-s's.

Theorem 2. If the fractions [a cs), x 1, 2, .. 0, ,# where

a is de"Ined by Equation (1), are uniformly distributed, then the br ,

-15-
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g terms of the number a in (2) form a normal sequence of symbols. Con-

versely, if Sequence (2) is a normal sequence of symbols, then the

fractions [asX), x - 1, 2, ... , P, ... , where

are normally distributed on the segment 01].

Proof. If the fractions (agX3 are uniformly distributed, then

P.(l/g s ) + O(P) fractions lie on any half interval of the form

Ia8 a +) 1 But by Theorem 1, this means that any term (68i2... 6a

is encountered in the caterpillar P.(l/go) + o(P) times, i.e., the

sequence is normal. Conversely, if the sequence is normal, by Theorem

1, P.(l/ga) + o(P) fractions lagX, x - 1, 2, ... P will fall on any

half interval of the type 8 a +i In any such half interval 6Ls8 ss i
there will lie P mes 6 + O[P(l/ga)] + o(P) fractions (since 6 may be

approximated with an accuracy of up to 2/g s by a sum of such inter-

vals). Then

a - -nm() - 0 - "-

but, letting s approach infinity, we can see that

P-n

which was to be proved.

Using Champernowne's example of a normal sequence of terms, we

construct a number a such that the sequence of fractions GMX, x -

I , 2, ..., in uniformly distributed.

For various problems in Diophantine approximations with expo-

nential functions, see Supplement (2).

Criteria for Normality of Base Sequence of Term

Lau us prove the theorem of I.I. Pyatetskiy (see (201).

Theorem. Let there be a sequence consisting of the terms 0, 1, ... ,

16 -



g terms of the number a in (2) form a normal sequence of symbols. Con-

versely, if Sequence (2) is a normal sequence of symbols, then the

fractions (agXl, x - 1, 2, ... , P, ... , where

are normally distributed on the segment [011.

Proof. If the fractions (agxl are uniformly distributed, then

P.(1/gs ) + o(P) fractions lie on any half interval of the form

a 8 . But by Theorem 1, this means that any term (6162... s)

is encountered in the caterpillar P.(l/ga) + o(P) times, i.e., the

sequence Is normal. Conversely, if the sequence is normal, by Theorem

1, P.(l/g5 ) + o(P) fractions lagx, x - 1, 2, ... P will fall on any

half interval of the type [ a + In any such half interval 6

there will lie P mes 6 + O[P(l/ge)] + o(P) fractions (since 6 may be

approximated with an accuracy of up to 2/g' by a sum of such Inter-

vals). Then

-lmjAi j- = ....

"but, letting S approach infinity, we can see that

P-c

which was to be proved.

Using Champarnowne's example of a normal sequence of terms, we

construct a number a such that the sequence of fractions (x), x -

1 1, 2, ..., Is uniformly distributed.

For various problems in Diophantine approximations with expo-

nential functions, see Supplement (2).

14. Criteria for Normality of Base Sequence of Terms

Let us prove the theorem of lI.. Pyatetskiy (see (20)).

Theorem. Let there be a sequence consisting of the terms 0, 1, ... ,

- 16 -



g- ,
a- ala,... (1 )

such that there exists a constant C such that the inequality

FGNx (6) <

will be satisfied for any natural number s and any s-tuple a (or A.)

consisting of the terms 0, 1, ... , g - 1. Then Sequence (1) is normal.

We shall follow the proof given by I.I. Pyatetskiy (see [24]).

His proof yields a stronger statement: a simpler argument may be used

to prove the validity of the criteria.

Lemma 1. Let us discuss all possible 1-term combinations of the

terms 0, 1, ... , g - 1 (there are g- of them). Let r be a natural

number. The number of combinations in which we encounter any fixed

term a number of times equal to 1(1/g) + (_/r), I'd > I will not

exceed -( r /412).

Proof. The number of combinations in which the term a is en-

countered precisely k times will equal
C€(g- 1)-'.

since this sign may be arranged Ck ways in k places, while the

remaining 1 - k positions may be filled with any terms except a. The

number sought in this lemma equals:

~~~! V~~fhm

Tkila 4.&autity is found by a well-known method. Since summation is

carried out over those k for which (r4/14)[k - 1(1/6)]4 > 1,

where

- 17-
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, " I ( - ,. --1. 2.3,.4.
I-0

Let us compute s . We differentiate (with respect to x) the identity

I- .

and multiply by x; we then obtain the identity

j icfx'(- x"- (x+ ,
I-. 

Ix

Differentiating this last identity and multiplying by x, we obtain

PC(I- x(x+ -,'"" ( 1).0( 1 -)': 1 7c)O )"-, +I-- )+,
1-4

Repeating these seeps

l (x+ 1-7 , + I

a t-
:xx+ I- )' 1,-(+ -)'

I-.

and once again repeating this procedure we obtain

Lv(x + I- I'-'+,€, - ,, (S+ -t I
+81(1-1)x' +-71)'+

+1( -,)(-)zx . + )1- 4)'+

Assuming in these formulas that x - 1/g, we obtain

5,-l-+ 71(- ):.
.- 1-+1(1-

s-1+ 74t 1l-)(t )

- 18 -
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C g I (I+7 1) +6(1- 1)(1-2) +

+ 1(1- 1)(1- 2)(1- 3) -

Since (l/g)[l - (i/5)] < I

Swhich has to be proved.

Let the sequence

-- ,,, F , ,.... (1)

satisty the condition oi" the criterion. We shall rirst show that the

equality

+ N18 +1(1a ) i

p.1.t

holds for the number or appearances or any term a among the P term

or Sequence (1) (we let Np(a) stand for this number).e We take 1 > 1

and combine terms into groups of 1 components

ai11 ... a ag .1 .. a.1+ ...

We introduce the natural number r. A system or 1 term is called

"good" if the term a is encountered in it a number at times i(1/g) +

+ 9(i/r), ts] < 1; the remaining systems are called "bad." We let L.(P)

be the number of good systems, and M(P) the number at bad systems up

to the the/l]-t term or

The terh a oumer o(l/g) app e(/r) tims in a good system, and te r

- 19 -



in a bad system. Thus, a term a appears up to the Pth term of a a number

of times

Np (a) L (P)-L +L( o " +6 1M(P)I+

+ T(M (P) + , -

=It_. e+LO+---

+0a +On. + Ga.

Here 0 < 02 < 1 and 1031 < 1. The occurrence of.a bad system is the

occurrence of a bad combination in the caterpillar of rank 1. By the

hypothesis of the theorem, each bad combination is encountered, when

P > P0, no more than 2CP.(l/g-) times, and by the lemma there are

O[g;-(r4 /12)] possible bad systems in all. Consequently

Thus, the term a appears prior to the Pth place a number of times

NPh(a)- + t6 0 oop+ 44+ P ?a~or+
Hence

Letting 1-.- and r we find that

lir -.(a)

We take s > 1 and any s-termed combination A - (61... 6s ) made up of

the symbols 0, 1, ..., g - 1. Let us consider the sequences

a - alas... as as+&.. • ...

Ta- - . ,.04. a .+ ,... a;+t.. .

70-1a - aa.. .a" ...

Each oi tn,,se sequences may be considered to be a sequence coqosed

- 20 -
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not of g terms but of gs terms, considering each group between apo,-.

trophes 'ak... ak+s.l' tobe a single term; A is such a fixed term. Tkt:

number of occurrences A among the [P/sl terms of the sequence TJa we

call A P/ s](TJa). Clearly

.-1 [Pl
Np ()- A' ("1 ) + o(s).

I-0

For each of the sequences TJa the conditions of the theorem will

be satisfied. It is clear that the conditions of the theorems will

hold for these sequences if they are considered to be sequences com-

posed of gs termS. Thus

At'I(Tim)7p - ., 1 -0.! ..... S--

P-00 7
Hence

iimN ,. I

Thus the theorem is proved.

S5. Application of the Criterion of Normality for Sequences of Terms

As A.G. Postnikov has noted [19], using I.I. Pyatetskiy's cri-

terion, it is possible to simplify the proof that the Champernowne

sequence is normal.

It has been shown that

Let X,<X<X,+.
NX(a)_ < X, ,j (A) rex, (A) X,+

",+ X, -( + ) + V, " <1+2S.

Thus

-21-



fi- -( + 2g).

Using the criteria of I.I. Pyatetskiy, we obtain

ilmNx(A) t

This discussion also indicates that it is possible to give an

arbitrary order to the r-digit numbers contained in sr in Champer-

nowne's construction, i.e., it is not necessary to use the natural

order as Champernowne did.

S6. A Second Definition of the Normal Sequence of Symbols

We call the infinite sequence consisting of terms 0, 1, ..., g - 1

weakly normal (I have deliberately translated Borel's term ([3], page

193) "simplement normal" as weakly normal) if the asymptotic frequency

of occurrence of each of the terms 0, 1, ... , g- 1 - 1/g.

The sequence made up of the symbols 0, 1, ... ,'g - 1,

a, a .... ( )

is called weakly normal to the scale g (k is a fixed natural nu.ber)

if when the terms of the sequence are combined into groups of k mea..-
borembers

and each parenthesized term is considered to be a symbol in the alpha-

bet consisting of gk elements, we obtain a weakly normal sequence.

Definition. Sequence (1) is called a normal sequence of symbols

if for any natural number k the sequence is weakly normal to the

scale gk.

Theorem. The definitions of normal sequences given in S 1 and 6

are equivalent.

This theorem is due to Pillai (30, 31). A qomewhat less complete

result is given by Niven and Zuckerman [32] (see [333 as well). Thee

- 22-



is a proof of this theorem in a paper by Maxfield [3]J; I did not

understand it, and have given another proof.

We shall prove that a sequence that is normal in the sense of the

definition of this paragraph is normal in the sense of §1.

Let A be a fixed k-term combination of the symbols 0, 1, ... ,

g - 1. Let A > k be an increasing natural number. We use all possible

A-tuples consisting of the terms 0, 1, ... , g - 1.

(bb,... bA).

We assign the "!measure" 1 /gA to each such object. To some

set X consisting of the various A-tuples we assign the "measure" PX,

equal to the sum of the measures of the objects entering Into the set.

We write each A-tuple as follows:

(0... OA) 0(1,... i,*J ... ( ,A-,,l .. • •A,

and calculate how manry times the element A will be found In this se-

quence. Let Xv be the set of such elements in which A is encountered

V times.

Lemma (Markov). When A

I • A + 2. -A + .. + (A -k+ 1). -. --*+ + IM

The proof may be found in [351, Chapter 6.

We let TI(Z) be the number of occurrences of sam set of A-tuples

X prior to the lth term of the sequence

•(01 ... 41 (a,,+I..•. %4...

Let P - Al + r, 0 < r < A - 1,

Np (A)- T (r%,+ 2T (2.) + ... +(A-k+ 1) T (ZA-A) + 0 (is) + 00).

From this and from the hypothesis of the theorem it follows that

P" o e A

Letting A approach., we obtain UMr---, which was what we wer*

to prove.

-23-



Conversely, let there be given a sequence normal in the sense

of §l

at. a, . a.. ,... (3)

We combine Sequence (3) into terms of k elements each

At, A,,..., (4)

where A, - (al+(_ll)k, ..., .1-1)k)

We shall prove that Sequence (4) is normal. We let a ) (B.... Be),

where B. - (6( ... 6M)), I- 1, 2, ..., a, while the 8" ixre taken

from the terms 0, 1, ..., g- 1.

We let N (w) be the number of appearances of the term w prior to

the Pth term of the sequence

(A,... Q (As... A, O...()

We let 0- (4(1) ... 6(l) .. 6(s) 4 (8)1 k ~ 1 k

It Is clear that

R, (-) < Np ().

Hence

11M NP(A) <kI

By the criterion of S4, the sequence is normal. This means that it is

weakly normal. The fact that k is arbitrary means that Sequence (3)

satisfies the definition of normality given in this soction.

Let a be an absolutely normal Borel number (see the Introduction).

Let the base-g expansion be as follows:

The base-gk decomposition of a will be

By the conQition for weak normality for the base 5 k any ombination

(b1... bk) will be contained in the sequence

(u,...a) (+,2...uu-..
- 24 -
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with an asymptotic frequency 1/gk. This means that the sequence ala2 ...

Is a normal sequence of terms.

$7. A System of Mutually Normal Sequences of Terms

We introduce here a concept due to N.M. Korobov (36], page 363).

We are given integers gl, g2 0 ..'" gk larger than or equal to

two. We are given the system of infinite sequences of terms
al l a l t..

"

a ll an, ...

a& - a, a 3 ...

where the sequence aj consists of the symbols 0,1 ... , gi - 1(3 - 1,

... , k).

Let* ii. Tho sequence of matrixes

( .. s .', ... I "P a".I

we call a caterpillar of length P (rank s) of Sequence (1).

We take any matrix

A6  - - 46

in which the Jth row Is composed of the symbols 0 1, ... , gj - 1.

The number of appearances of A. in the caterpillar o. length P of the

system of sequences (1) we call Np(A8). We call the system of sequen-

ces (1) mutually normal if for any natural number ! and any matrix
A5

lirai -pd. ,

The theory of mutually normal sequences or terms reduce$ toj

theory of normal sequences of term.

We shall consider any column to be, a single symbols where
bk/

0 < b . - 1, J - I, 2, ... k. It is clear that *l, g, ... , g

5- -

Vr



such terms. The system of sequences (i) may be considered to be a single

sequence

,-0 1 , , ..... (1 ')

but where the terms are taken from an alphabet containing 91g2... gk

symbols. It is cler that the mutual normality ot the system of so.

quences (1) is equivalent to the normality (in the normal sense) of

the auxiliary sequence (1'). From this there follows a theorem.

Theorem. Let the system of sequences (1) be such that there

exists a constant C such that

for any natural number s taken or for any matrix A. considered. Then

the system of sequences is mutually normal.

This Is a possible method for constructing a system of mutually

normal sequences. The normal sequences constructed of gl. .. gk_ terms.

Zaoh term 0 < a < g,... gk-1 corresponds to a column of k rows (the

Jth row consists of the numbers 0, 1, ... , g 3_) and the Initial row

Is expanded into k rows by this correspondence.

Example. Let £1 - 2 2 - 3. We establish the correspondence

We use a Champernowne row for six symbols

O'1'2S'4'5'O0'l'02'OB'04'0S'10' 11 '12'1$'14'I8'O21' 22'S'14' 2530' 1'
33'4''40'4 1'42'43'44'45'80'51'52'83''...

It corresponds to the system of sequences

O' 1'0'1r0' 1'0O'01'00'01'00'01' 10' I 1,10,1 1'10'i1I'

001 122000001010202000001 01 020

.10 1011 11 1212 10 101111 12122020211

00'01'10'i 110 I '10'...
3220 0 21 l 22 .

The system of sequences obtained is mutually normal.

- 26-



8. The Problem of Constructing a Sequence Mutually Normal to a Giver.

Sequence

The material presented here has been taken from L.P. Starchenko

137, 38].
For a natural number g > 2, let us consider a normal sequence con-

sisting of the symbols 0, 1, ... , g - 1,

su..(1)

It Is necessary to construct a sequence of terms

sass...,(2)

such that the system of sequences (3)
636...

s(3)
will be mutually normal.

We shall first prove that for any natural number a ther is an

O(s) such that for any s-term combination A

Mp N P (Aj ( < c

provided that P" > *(s) and P, - P" > P"

Actually
Mi. (A.)N.(,

P-4-i r

P

S P P P

According to the Cauchy convergence criterion there exists a

P(s* £) such that for every P' and P" laner than P(s, a) the in

equality

holds. By~ the normality of the Initial sequence we have where P" >P()

.27 -



rI

We take the largest of the numbers ?(A.) and P(s, As) taken over all

possible A5 as *(s).

Taking these inequalities into account, we obtain
I t

NP (A-(Aa) . + N(. (As, _
"-. + p -,, P)

We now proceed to the construction: to do this we will "distort"

the Initial sequence to an ever greater degree.

In the first line, we write the given normal sequence (1), and

In the second a sequence that we can prove is mutually normal with

respect to the given sequence.

...... 4M-t 0h. series

4w ... "a 1 8qe ..... * %* 1-at series

...... ' , 4 +a...
.. ~. • •4 1 , 4 ... w w+ • •. . 1-1 series

whle vs is any natural number for which

Then

We shall prove that we have two mutually normal sequen..

We take any k-oolunn matrix ( Is fixed)

Let

where V - 0, 1 .. ,v reil- 1.

We let 0X be the number o ties ITk appears In the aterpillar

-28-
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of rank k o length X for the described system of sequences.

Let s > k. - ...

Prior to the number $Tk) - 1, the combination lk is encountered

some number of times. We let this number be L. The appearance of S in

an s-series indicates that in the corresponding positions of the

caterpillar of rank 28 of the initial sequence there appears one of

the g2(s-k) combinations having the form

b.. . ' .

(This is valid with the possible exception of the last 2s numbers of

the series.) In each section separated by apostrophes, such a combina-

tion appears less than (C/g2 8)Q times, where Q Is the number of sym-

bols In this section; but the number of such combinations equals

92('- k ), and thus the number of occurrences of Ek will be less than

9 2(&-k) C,/g 2 s . CQ/gS. Thus

GX<L+.-+O('

The quantity 0(s2) appears at series splices.

s2/- 0, since X > C2s where C is scm constant.

Thus

Let

X.<P<X. ,.
where Xa - 2 X* + I.

2w -Sherf-

.29-
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Since the criteria tor mutual normality of the two series have

been satisfied, the required system of sequences has been constructed.

Let us construct an infinite number of series mutually normal to

the given Sequence (1). We construct one sequence mutually normal to

Sequence (1)

ala,...a,... (3)

Sequence (3) Is a normal sequence In which the ters Ae taken

from an alphabet consisting of g2 elements (a eolumn Is considered to

be a term). We construct a sequence mutually normal to Sequence (3)

and consisting of g2 symbols

,,...,;.... .

, , ;..,;.+. :(14)

equemce (4) my be considered to be a normal sequence in which the

symbols a" taken from an alphabet consistig of g elemoat. ye con-

struct a sequence mutually normal to Sequence (4), etc.

19. Bernoulli-Nomal Sequences of Term

Let there be given two positive numbers p and q such that p + q -

- 1. Let there be an Infinite sequence consisting of smbol 0 ma 1,

43, 63b, ~... (1)

Let a be any natural number. We write Sequenoe (1) in the fram

of e "eaterpilla"

(,,,,...,,g,,,...,.q)...(,,,,,....,,.,) .... (2)

Let a- (61... 6e) be any s-tvlo consisting of the pyrbols 0

am 1. we let Np(a) be the number of ocourrenoes of the teau a ptor

to the Ih tea o 8equenee (3). We call SequeMe (1) a IsmOull-

normal sequence of symbols if for. any natural s and aW s-tuple A -

(30



P-.

where to is the number of ones among (61.... 6s).

Let us prove the following generalization of I.I. Pyatetskiy's

criterion (see (123).

Theorem. Let the sequence of symbols l'and 0

£ -n II I,.'a.••

be such that there exists a constant C > 0 such that for any natural

number and an -tuple a (61... 6) consisting of 0 and 1

I.-.- P

where I is the number of ones among the 6162. .. ag.

Then Sequence (1) is a Bernoulli-normal sequence of terms.

The proof is similar to the proof of the theorem in 4.

If A - (61... 66) is some element consisting of zeroe and ones,

we then lot PA -pJqa- J where J! Is the number of ones among the 61... 68.

We will call the quantity VA the measure of the element. If Z Is some

set of different 8-tuples we assume that pz equals the sum of the

measures of the multiple-term elements entering into the set.

Lem 1. Let r be a natural number. Let z be the set of. those

1-tuplea in which the number of ones J satisfies the Inequality I -

-2PI 2:-r
Then

As in Lemma 1 of S4 we find that 0 - IZ and equals

*e.b

Carrying through the proced-:'e use" 'a Lama 1 of S4. we obtain the

evaluatlon needed.



Lemma 2. Let r be a natural number, A some s-termed combination.

Let 1 be a natural number.

Let us consider the 1s-tuple consisting of smboa 0 and 1

(0aa..aa, 0, .. a. .. 4k-j l.. a14

and let us group It Into a elements such that we may use the repr -

sentation

(b, b?..ba,

where bk - (a(k_l )+1... aks) (for a - 1, both forms are the same).

We let AQ-) be the number of occurrences of the combination A among the

blb2 .., be. We let %tbe the set of those Is-tuples for which I - 24l >

> y'r (r is any natural number). Then

Proof. The measure sought equals

k-0

Repeating the argument used to prove Lemma Iof , we obtain the

statement required.

Let us now prove the theorem. Let the condltions of the criterion

be satisfied for Sequence (1). ;e group the terms of Sequence (1) Into

s elements
bl .. b,,... (3)

where bn - (a(rn)svl... an*). Prom the P terms of equew*e (1) It Is

Possible to form EP/s] term of Sequence (3). Let us take a natural

numer an group the tex of equene (3) Into elem ts of 1 00s-

ponents
pa(3)

We select a natural number r, and will cal4 an 1-terz group

good if aoccursIn It anumbr oftime LIA +(:L/)), 101iSl1

we shall call It bad if this Is not the case. We let ([P/8) be a

32-



number indicating how many times a bad group is found among the firn,

l[[P/s]/l] terms of Sequence (3). Then a good group occurs a number if

times

P

with an absolute constant in 0. A good group introduces 1[" + (e/r)]

symbols, while a bad group yields no more than 1. Thus the number of

times the term A occurs prior to the [P/s] position in Sequence (3)

Is

Alt'],-C, (a -I M (PA + M 0(,,) ) +,oM +0[o .

where 0 < e1 < 1, 0(1) occurs owing to the fact that there possibly Is
4

an Incomplete group and thus there is an absolute constant in 0. Each

bad combination belongs to a systeml; thus

M

But when P > PO by hypothesis

.[;C1<2C.,.JP.

Moreover, by Lems. 2, Alk r4/41 2 . Consequently when P >

Alts] ~(a) IA+1 PI

IAI P pA < t1 7
When 1 approaches infinity we obtain

When r approaches infinity we obtain
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We let Ta, - 1, 2, ... , s-.1 be the sequences

T 's e.. e .... (4)

We have

1rn A-0. ..... .VA

But it in clear that

HN (4) ZA11 74 a)+ 0(4
1-0

And from this it follows that

UM M(A)M
P-." P a

which was what we were to prove.

We need a concept that In more general than the concept ot a

Bernoulli-normal sequence of term.

Let there be given & positive numbers pO ... p6-I; let Po + P, +

+ ... + Pg_" -1.

Let us consider an s-tuple made up of symbols 0, 1, ... g - 1,

A- (61... 6,).

We let pA be the quantity P61... Nos" It Is clear that

,pA.(i ... +h.- - 1

where the sum In the left side extends over all s-tuples.

We call the sequence composed ot the term O 1, ... , g - 1,
.a... ... (5)

a.normal realization o Independent trials It for any a and any con.

blnation A the relationship

F-P
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holds.

The criteria are valid.

Theorem. Let Sequence (5) be such that there exists a constant C

such that

Ti M-( < C¢a

for any combination of any length. Then Sequence (5) is a normal reali-

zation of Independent trials.

The proof generalizes in obvious manner the proof of the criterion

for Bernoulli-normal sequences of symbols.

§10. Construction of a Bernoulli-Normal Sequence of Symbols

Here we present the construction of a Bernoulli-normal sequence

of symbols given by A.G. Postnikov and 1.1. Pyatetskly (see [12]).

We use an idea due to Chanpernowne [18].

Let 2 (as before) be the probability for the occurrence of an

event In each trial. We take any sequence of rational number arsi r

such that

,, (-,).

Such a sequence exists for any p, 0 < p• 1; If is a rational num-

ber, p w a/Ap we then simply take a ,- am, r = p for any r.

We let 8r be the sequence of all rd git numbers in the binary

systemi a number in which a one Is encountered v times and a zero,

consequently, r - v times will be repeated ai(Pir - r)  time. We

will separate the numbers by apostrophes. For example let @3.- 2,

03 - 3. Then
O oo'oo1ool'OlO'OlO ol0 I'0I1'01 I' 1'oo 0oo'10olI0lOlo1'1o11111o

10"110" 11
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is Bernoulli-norml. To do this we must show that any s-termed com-

bination in which there are v ones is encountered with an asymptotic

frequency p qS-V In accordance with the criterion it is sufficient

to show that there exists an absolute constant 0 (independent of A)

such that

rimx' A° <Cjrq-.

We lt xr be the number of terms in or' Sr the sequence aSl82 . . .

sr, Xr the number of terms In Sr(Xr - '1 + x2 + ... + xr), gr the

number of occurrences of a s aIn a t, and Gr the number of occurrences

of as :in Sr . Let us calculate xr . The number of r-digit numbers in

which a one Is- encountered k time8 will equal Ck-; each number will be

Frr

iepeated n l(iso rv o times. Thus, there will be

bidait numbers In tr and xr - sr terms.

f n c r the A may or an not be separated b an apostrophe. If

to< s then s cannot be contained undivided In r i r > a ds n

contained undivided in sr exactly

times. Actually, there exist r - s + 1 ways In which A. can occupy
an undivided position In an rdigit number (the first eunbol o Is

y oncide with e f ters in with the second term, ..., wi th e

r -b + o-tuh tern of the rdagdt number). as oofupies a places in this

nmber, and In the remaining r - places we may place f ones (0 f<

r d f wys whle the remaining places are flled with

r r'
a'ediit number n 5-dr' numbrer trms. rvfer- z-v4 ;re

(to it s e add v ones from A and ).uide n s, A 5 8oo ded

aen r exactly

rr

tims. ctully thre xis a'-3s+1wy nwic6 5 cnocp



I-0

(r S + 4 (P -, -. 1

I-$

-,- + 1)a;(,- ,,-

times. sr contains or apostrophes. A given apostrophe cannot separate

more than s different as. Thus A. is contained divided no more than

o(1r) times (a is introduced into the symbol 0 since s does not in-

crease).

Thus,

9."(r- + 1) .01, - 4- Kf-8 + 0 ,)r--
+ 0 X, ('-1" 0 ( 0 I'

Since

Then

- x, p-- +0(, .

Further

G .g+- 0 (r). X. - .,,

We obtain

Let

• ?', < P < .,

then Nt(& s ) r and (r - - < X 1

Moreover, Xt . _ + rr. From this it follows that

while .Ince Prlf,. 1 4 0(1/r),
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P . ,

.V# (As) C
75-n t <C1mL'- Cp'q'.

P.._ P ,.

The criteria are satisfied and our statement is proved.

§ll. Relationship of the Concepts of Bernoulli-Normal Sequence of
zy1OS and Aamssivbe Numoer

A. Copeland [14] has, introduced the notion of an admissible num-

ber. Let there be two positive numbers p and , such that p + q = 1.

Consider the infinite sequence formed of the symbols 0 and 1,

This sequence is called an admissible number if for any natural num-

ber m and for any different nonnegative integers r., r2 ... , rk loss

than m the sequence

h(2)

where 13n = srlen+r2... gnmr k ( n 1 1, 2, ... ) possosses the

property that the relative frequency with which a one appears In

Sequence (2) approaches Rk when no-o w.

Let us prove a theorem.

Theorem. The notion of a Bernoulli-normal oequeno of symbols

Is coextensive with the notion of the Copeland adissible number.

Proof. Consider the Bernoulli-normal sequence of symbols

. ,, ... (1)

We take arbitrary _ and combine the symbols In Sequence (1) into

groups ot a components

as*.. .,.... (2)

where at - (%t* *go# .. +m-)# t - 0, , ... The ter of Squence

(2) are taken from an alphabet containing 2 elements.

We shall prove that Sequence (2) is a normal realization of in-

dependent trials in which pi " b, (the b, rarge over all possible n-
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tuples consisting of the two symbols 0 and 1; ± - 1, 2, ... , 2m) .

Let - Ccl... c5 ) where c- (6()... 86(), and the 6(') are ta:ei

from an alphabet consisting of the symbols 0 and 1. We let Np()be

the number of occurrences of w prior to the Pth position of the

caterpillar of Sequence (2). We let n = (6(l) . (l) 45)... 6(s)).•1 .. m  ,.. 1 . •

We let Nx(fl) be the number of occurrences of fl prior to the Xth

position of Sequence (1). It is clear that

Hence

P-. P

This means, according to the criterion, that Sequence (2) is a

normal realization of independent trials. From this it follows, in

particular, that if w - c - (60... 6m_l) where among the 60... 6M_ 1

there are . ones and m - a zeroes,

P-. P(3

Let r1 < r2 < ... < rk be nonnegative integers less than m. The

quantity 1n constructed for Sequence (1) equals 1 If and only if there

are ones at the r.-th, ... , rk-th positions of the element an (of

Sequence (2)]. We let x be that set of m-tuples c consisting of sym-

bols 0 and 1 for which there are ones at positions rl, *set rk.

A - P,(+ W,-ft- e.

In view of Equation (3) Sequence (2) possesses the property that

the relative frequency of occurrence of 1 in it approaches pk. Put

this is the definition of an admissible number.

Let there be given an admissible number
,,.,,....(4)

We dilv.de Sequence (4) into sections of length k

"39-



Let 1: be some set of k-tuples characterized by the fact that at spe-

cific positions there are a ones for the elements z, while there, are

0 zeroes at specific positions (a + a < k). We lot T1 (Z) indicate the

number of times the set Z is encountered prior to the lth position of

Sequence (5). It is esay to establish (by iruction with respect to 0)

that for an admissible number

,. - -sr -p.q. (6)

Let A be a fixed k-termed combination consisting or symbols 0 and 1.

Let A > k be an Increasing natural number. We take all possible A-

tuples consisting of the symbols 0 and 1,

(b11 .. b4

Bach such element is assigned a measure pjq-J, where 1. Is the number

of ones among the terms b1 ... bA. To some set a of different A-tuples

we assign the measure Iw, equal to the sum of the measures of the

elements entering into it.

Let us calculate how many times A is contained In the sequence
., .; .. .. .. ,, b.. (7)

We let ov be the set of those A-tuples for which A is contained in

Sequence (7) v times.

Uma (Narkov). When A

where a is the number of ones in A.

Proof. (See [351, Chapter 6.)

Let P - Al + r, 0 < r A - 1,

A-&*&a

In vlov., of Equations (6) and (8) we obtain

-Fq60 +(- 0
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When A approaches., we obtain

which is what we were to establish.

§12. Completely Uniformly Distributed Sequence;'

Let a be a natural number. Consider the sequence of points

lying in a unit cube of the s-dimensional space

LP. (X&, .... ,,%

Let As be any parallelepiped lying in a unit cube with edges
parallel to the coordinate axes. We let I I68 be its volume. We let

Np(As) be the number of points in Sequence (1) with numbers that do

not exceed P, and which lie in As .

We say that the sequence (1) is uniformly distributed n a unit

cube of an s-dimensional space if for any parallelepiped the rela-

tionship
iIm IA( -hI. (2)

P- P

holds.

If s - 1, we shall then say, as previously, that the sequence of

numbers Is uniformly distributed on the segment [01).

N.M. Korobov [1] has introduced the concept of a completely uni-

formly distributed sequence.

Consider an infinite sequence of numbers from the segment [01]

(3)

We choose any natural number a and form the sequence of points In

an s-dimensional unit oube
(s. ,..a(agn...as +)... (54)

The Sequence (3) is called coqletely uniformly distributed if

for any natural number a the sequence (4) is uniformly distributel
- 41i -



a unit cube of s-dimensional space.

More precisely speaking, N.M. Korobov has introduced an equiva-

lent definition, e.g.:

The sequence of real numbers (3) is called completely uniformly

distributed if for any natural number a and any set of integers ml, .,

Mi, differing from 0, 0, ... , 0 the sequence

Pig' Pita....(5)
where Pi - (mlc l + ''" + Msl+&--l| -W 1, 2, 111, is uniformly dis-

tributed on 01] ((] indicates a fraction).

The equivalents of these definitions follows from the following

criteria for uniform distribution due to Weyl 12].

Lemma. For the sequence of points

to be'uniformly distributed in a unit cube of an s-dimensional space,

it Is necessary and sufficient for the condition

to be satisfied for any set of integers , u2P **go N different

trom the setO, O, ..., 0.

In the next paragraph we shall con.

I I struct a ompletely uniformly distributedI ~ I

II sequence, and thus establish Its existence.

I B definition, any completely unlform-I .I I

S ly distributed sequence is uniformly die-
I I1 J trtbut on the *Sp tea[oI] (a - 1).

-. There exist sequenos, however, tbha&t are

uniformly distributed on (01] and that arePig. 1 not oepletely uniforaly distributed: tor

eumplc, let £> 2 be a natural number; we select a real nmber a such

4g-
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that the fractions (agx) are uniformly distributed (we have construct-

ed such an a in this study. Consider the sequence of points in a unit

square: (agX), "c(xtg l),x 1, 2, .... In view of the self-evident

relationship {cgX+llu, ((,,x) g5 we find that the points ((0gX), ( x+li)

are located within the unit square only on the lines drawn (Fig. 1),

i.e., the sequence of points is not uniformly distributed within the

unit square and what is more, the sequence (cge}, x =1, 2, ... , is

not completely uniformly distributed.

§13. Construction of a Completely Uniformly Distributed Sequence

There exist several methods for constructing completely uniform-

ly distributed sequences.

The first example was proposed by N.M. Korobov [1. In this

example, the sequence is given as a sequence of fractions of some

Integral function whose argument runs through Integral values. The

Integral function itself is given with the aid of a speially con-

struoted power series. The proof that the sequence obtained is com-

pletely uniformly distributed makes use of an evaluation of trigono-

metric sums with polynomials, and is quite complex. In [253, N.M.

Korobov gave another method for constructing a completely uniforply

distributed sequence: the sequence is defined as a sequence of frac-

tions ia(x)qXJ where x - 1, 2, ..., and % ts an integer > 2, a(x) is

a specially constructed integral function. A simpler technique than

that used in [1] is used to prove that the sequence constructed is

completely unifomly distributed; this construction, however, cannot

be considered to be simple.

.The oonstruction presented below was carried out by L.F. Starchenko

[273.

This construction is technically simple, but it Is based on a

profound property of transcendental nuers . L.P. Starchenko [37] hr
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given still another construction for a completely uniformly distribu-

ted sequence. We shall discuss this method in $15 of this monograph.

Let Pr- r-e be a prime number. We lot nk a [a (i-n k)3] + 1, k -

- 1D 2, .... We consider the sequence of real numbers

(in}2). 12In2) ... , (aIn2). (in 2), fin) ..... (a,1n 2 ).l)
{nIn 3). {n2). (In3) ..... {Inp,) , {n, n}2) . (a,i np,)...

We designate this sequence as
ai' , flat t • •

Theorem. Sequence (1) is completely uniformly distributed.

Proof. Let a be a fixed natural number, ml, ... , ma be integers

not all equal to zero and m- max(ml, ..., m.). Consider the trigo-

nometric sum

We let T n 1 + 2n2 + ... + jn . Let
T,+ X(k+ ,)<P<r,+{x + 1)(k+ 1).

We write the sum in the form

+
DJ I-e ,a

+ ho, " +i . 4

Since a Is fixed# the fi.rst sun Is 0(l). We now eahnOW the wadelr-

of summtion over the indice L a r6. It is posslble to aks us* or

the well-known condition

* ~ ~ ~ ~ 4 +OI-l lI



where (c) is the distance of c to the nearest integer

1.-a., \ , (,hrip,+ ... +i,,np, 1 1 +

Jklk"+ , n "".. I pji "4() m In r+. .+ ,

i I+ 0(k)).

We shall in addition require the following lemma, which given a

quantitative result ot the well-known fact that numbers of the forin

ea are IzTational, where a is an integer [26].

Lemma 1. Let f, f., and a be Integers, t > f, > 1, a < 2 ln 1, m-

[10 n f 1, n - [3 In (m + 1)] .1. Then
I i ;._,a > I

An obvious consequence of this lem is Leam 2:

Lem 2. Lot f f, f and f be natural numbers. Let H* mx

(r, fl). There exists a constant c > 0 such that

Let

WA~P, + - +i~hAmr (4.(l)

Then

iIsknown that p~j ,landthuHsJRo . Hene (01 ao 030
c4 are positive constants)

(S) Z)I w I ~+ 0Of4t wwo* 0 W'
I-a

By the Weyl criterion, Sequence (1) Is completely uniformly dis-

tributed.
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414. N.M. Korobov's Theorem

N.M. Korobov (see (1], page 217) has proved the tollowing theorem.

Theorem. It a sequence of real numbers from the segment (01]

is oompletely uniformly distributed, then a sequenoe of the first base-

g terms
[ ft e] , [1 01 ... . [- lpel . (2 )

Is a normal sequence of terms 0, 1, ... , a - 1.

Proof. In fact, for any natural number E, the presence of the com-

bination As a (61... 6s) in the oateopillar tor Sequence (2) Is

equivalent to the tact that the elements ot the corresponding term in

the caterpillar tor Sequenoe (1) will fall within the interval

[- , I = 1, 2, ..., a. Since Sequence (1) Is ooqletely uniform-

ly distrbuted,

I.e., Sequence (2) Is normal.

Remark. Sime the"e exist methods for constructing oopletely

uniformly distributed sequences, N.M. Korobov's theorem yields methods

for constructing normal sequenes or spmbols.

S15. The Oonverse or N.M. lorobow's Theorem

L.P. Starchenko has proved the statement that Is the converse of

N.M. Koraboves theorem [37, 38).
*. ,Let g 2 2 beta natural nuber, and

be a given normal sequence oposed of the symbols O; 1 .... g- 1.

.sing the method given in S8, ve construct an nftinlte nvmber of

sequences

[4 -



(1 - 1, 2, 3, ... ) such that for any natural number 1 the system of

sequences
i. . . ....

"- (1)

(2)

is mutually normal.

Theorem. The sequence of real numbers

LI, 6,,gS..... (3)
(1)j (2) o s/) (1)/62) ~ _where a O, - (1) ( (i.e., - + .. ] is

a completely uniformly distributed sequence.

Proof. By the definition of completely uniformly distributed se-

quence, It Is necessary to show that for any natural numbers, the

sequence of points

Q,. Q,, . ... , (4)
where

4*-(,A. 660#...., *%I.

Is uniformly distributed in an s-dimmnsinal unit cube.

We take an arbitrary natural number I and oonsider the sequence

of points

whee. ,) while the number a.. Is de-

fined as follows:

Or-0. 9 . .

Since the system of sequences (2) In mutually normis every

possible point Q1) In Sequence (5) will be encounterod with an asymp-

totic frequency of 1/8-8 .

But when we find a point %t), It m that ths oorreeponding

--- . 'Is wlth. a cube defi=ed by te syst#e of Inequal1ties
0. S< ... - 5-0. I,....,-.(

4T -



Thus, the number of times that points of Sequence (4) tall within

any cube of the form (6) will have an asymptotic frequence of 1/g - e ,

i.e., it will equal the volume of cube (6). Since any parallelepiped

lying within a unit cube of s-dimensional space may with any degree of

accuracy be approximated by cubes of the form (6) (taking large enough

1) the theorem is proved.

§16. A Sequence Completely Distributed-Over the Function PFx )

Let there be given a distribution function F(x). We associate

the distribution function F(x) and the measure &L on a line that is

also In an s-dimensional arithmetic space, as follows: the measure of

the segment A - [xlx23, where x1 and x2 are points of continuity of

the function P(x) equals V - 7(x2 ) - P(x1 ); if An is a parallelepiped

In s-dimensional space whose projections on the coordinate axes are

the segments A(1), ... , w( ) with ends that are points of continuity

of the function P(x), then

Consider the sequence of real numbers
%*at A..., ga....e)

We take a natural number a and form the sequence of tuples

(a& % ... ...... B ,. )... (2)

We write Sequence (2) as a sequence of points In an s-dimensional

arithmetic space

Q1. Q. ,... ,Q,.... (2')

where Q - (a,, 0 iL+L') # 1 - 1, 2o...

We shall henceforth let A. stand for the parallelepiped As

- (6(1)... 6 8 ) ) In an s-dimensional arithmetic space such that the

ends of the interval &(l) ... , A() are points of continuity for the

function 7(x).

We lot be(s) b the number or points in Soqueno (2) prior to
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the Pth number that lie within A..

We call Sequence (1) completely uniformly distributed over the

function w(x) if for any natural number s and any parallelepiped A.

Special cases:

1) Let

If Sequence (1) consists of the numbers 0, 1, ... , - 1, this Is-a

normal sequence of terms.

2) Let
X<O.

F(x)-{X O<X<i

If Sequence (1) Is made A-of etal numbers taken from the segment. 101],

then the sequence Is completely uniformly distributed on the segment

E01].
3) Let ther be given two positive numbets aAnd q such that

p + q = I and

F (x)- O<X<1., <x (3)

Let Sequenoq (1) be composed of the numbeas 0 and 1. The sequence

completely distributed over the function F(x) defined by Xquations

(3) Is a Dernoulli-normal sequence of sybols.

4) Let a > 0, p(m) - (aw/mI)o - , where m > 0 Is an Integer.

Let us consider the tollowing distribution tmnt& on

x>. (4)

if Sequence (1) is made up or negative integers and Is completely

- 49-



tributed over the function F(x) defined by Eqs. (4), we call such a

sequence completely Poisson-law distributed.

x to
5) Let F(x)._ a ,dz. If Sequence (1) is completely distributed

over this function F(x) then Sequence (1) Is said to be ocmpletely

¢auss-law (or normally) distributed.

17. Construction of a Sequence Completely Distributed With Respect
to a Function 1x)

If there Is a sequence

41. %, ... , ... , (1)

completely uniformly distributed on the segment (010 is Is then

possible to construct a sequence completely distributed with respect

to a function 1(x). This method generalizes the theorem of N.M. Korobov

(114 of this study).

Let us construct a sequence of real numbers

No & .. .pr..... (2)

where 1ij Is defined by the equation

FG61) < £jli4 F 014

We shall prove that Sequenoe (2) Is completely distributed with re.

spect to function F(x).

We take s and form a sequence of points in a unit cube of'

dl:aens4onal space

Qjo o, Q0 . .9Q^ 9(3)

where - (ap... up+ and the sequence of points in s-dimemsional

spa*e

where

W.,- take the Parallelepiped A (A(', , A()) we" P)

I (( ), I- 1, 2, ... , s (), P), W. b,15) an points
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of continuity of the function P(x). The number of points of Sequence

(4) prior to the Pth number that lie within parallelepiped as equals

the number of points of Sequence (3) prior to the Pth number that lie

within the parallelepiped 3 - (Z"), , (s)), where Z(i) -(c()

d(l)), I = 1, 2, ... , S; c() - Pa"t)), d(i) - P(b(i)). But since

Sequence (1) Is completely uniformly distributed within the unit cube,

when P-o a this number is equivalent to

PJA ImP l(F(b4)-F(.4n)).PA4
1-1

Thus, for Sequence (2)

which was what we set out to prove.

S18. Measure in a Space of Infinite Sequences o Symbols

We have made use of 1.1. Pyatetskly's criteria to prove that a

constructed sequence Is a normal sequence of symbols. For constructions

to come, we shall also need theorem that extend the criteria of

I.I. Pyatetskiy. There are difficulties Involved in provin such

theorems by the method presented in S4 (the calculations become cum.

bersome). There Is a more flexible method of proof, however, based on

the study of the metric properties of dynamic system. In the follow-

Ing sections, we shall give such a proof for a Pyatetskiy criterion.

We will require nw Information from measure theory (393. In

the classical theory of functions, a space with a measure is a finite-

dimensional Rualldoan space. We shall use a different exaple of a

space with a measure.

Let 3 ] I be a naluml nmber.

Consider the set of all Infinite sequences made up of the symbols

OP I# 1..# -



We call this set the space R, and we lot the letter p designate

the elements of this set.

We shall consider certain sets of subsets of R (following Halmos

E39] we shall call such sets classes of sets).

Let s be any natural number. The set M of sequences in which the

first a symbols 6l, ... , 6 are fixed shall be called elementary

cylinder sets, and we shall designate them as M(61... 6s). The space

R and the empty set 0 are also elementary cylinder sets.

We note that two elementary cylinder sets are either disjoint or

equal, which will simplify our study.

We call a set that may be written as a finite set-theoretical sum

of elementary cylinder sets a cylinder set.

Lemma 1. Cylinder sets form an algebra.*

Proof. We shall first show that the intersection of two cylinder

sets N and M' Is also a cylinder set. Let

IMUMI M'-uM;.
I I

where It, and N' are elementary cylinder sets

mnm,-uunm;-
I

But the n- mae elementary cylinder sets.

We shall now show that the ccuplement of a cylinder set Is a

cylinder set. We let CM be the complement at the set N. The oeplement

ot the set X(61... 68) Is a sum of sets of the tozu ( ... *), In

whioh -go form all possible combinations of symbols with the ex-

ception at 610. 68, i.e., the complement Is the sun of a finite num.

be of elementary cylinder sets. The formula

C(zU me) - CMinCM,.

Is self-evident. From this formula and from the tact that the inter-
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section of two cylinder sets is a cylinder not It follows that the

complement of a cylinder set Is a cylinder set.

Using the rule

I. (R)- 1; 2. p(O)-O; 3. (M(... 8)). t

we introduce a function whose argument Is an elementary cylinder set

M, IL(M). Let us study the properties of this function:

Lemma 2. Let there be a cylinder set 14

M4 - UM11

where the M1 are elementarZ cylinder sets.

There exists a system of disjoint elementary cylinder sets y1 , 'f2 t

"*~'y', such that

1. M - Uyi.
2. Tf Mifl,.. Othm'T, CM,.

3. 4l1 equals the sum sLY, of those Y, that have points In common

with MI.

Proof. Lot N-(64~), ...# 6Mi) and s a max a,. If a~ < S. we

repr*sent mi as a sum gs-si or elementary cylinder sets In which the

first a terms coincide with 6(1) while the remalnin a -
1 a* ~I

- s i are varied in all possible ways. We include all of these sets in

the system yV, 2, .... If a a si, then we place the NI in the sys.

tem T., 72 0 .... One representative from each group of Identical sots

Is left In the system of sets thus obtained. We obtain the system of

sets required. In fact, the sets y r me disjoint. Let us cheek all

the assertions of the leuma In turn:

1. By construction, all the K1  UVj(D while N-U 1 .

2. Two cylinder sets are either disjoint, equal, or one is cor-

tained tn the other (here the set contained is that with the maller

number of fixed symbols).

3. Those Yls *** VN that enter into the representation of' 14;

- 53 -



a sum g-si of elementary cylinder sets intersect with Mi . The equa-

tion ge-si(i/gs) - i/ga1 shows that ILN1 equals the sum Iry of those

ly that have points in common with Mi.

Lemma 3. Let (Mi) and (F be two finite systems of elementary

cylinder setsz then

UMIC UF,

and the N1 are mutually disjoint. Then

Proof. Consider the sum

M . UM1UFI.
We apply the preceding lemma to the set M. Since the sets M-are dis-

-joint, the same Yk cannot be contained in two different N1 . Conse-

quently those yk contained in U N1 can be separated into groups with

group Ti containing those yk contained in N1 . The groups T, are dis-

Joint

M TitT

where T in the set of all 7 k contained in U N. We now distribute the

noe yk contained in T among other groups. In particular, let 31 be

the set of all k (contained in T) that are contained in Fl, let

32 be the set of all yk contained in F2 but not in F1, and lot 83 be

the set of yk contaned in F3 but not in 33 U 2 .... Then:

81

Since P (by Liae 2) equals the sum WTk of all k ncluded in F

This means that

)PM, ys pPym2Fa) I#F,'
r I e1

The lemma is proved.

Corollary. It sa. set N can be written as the finite sum of die.
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joint elementary cylinder sets in two wavs

M-UM, M-UF.

then

I)

In fact, U 1  UF j and UFj C.U Mi. Thus by Lema 3

pM,- ,I,.

We now extend the function g(M) from elementary cylinder sets to

cylinder sets.

Definition: Let M be a cylinder set

M- UM1,.

where U Mi Is the sum of a finite number of disjoint elementary cylin-.
i

der sets. We say that ILM - ZPMA.
i

In view of the corollary that has been proven, this definition is

consistent.
5

Lern. 4. Let P - u M where K1V Ns, 4 are disjoint cylinderi=1
sets. Then

pF- pM-.

Proof. We decompose each M, into disjoint elementary cylinder

sets

Agm UMil.

Then

Since the M, are disjoint, the ij are also disjoint.

F .. ) YM.

pFVV Mi.

Thus
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We shall now prove that the function L, in a rather strange form,

is countably additive.

Lemma 5. The sum of a countable number of nonempty disjoint

cylinder sets will not be a cylinder set.

Proof. Let the cylinder set F be the sum of an infinite number of

nonempty disjoint cylinder sets F - U Fl. We decompose each Pi into

disjoint elementary cylinder sets. By Lemma 1, CF is a cylinder set;

we represent CP as the sum of disjoint elementary cylinder sets. We

obtain a representation for R as the sum of a countable number of

elementary cylinder sets
U

R- UfM'.

Let the Mal) be those terms in which the first element is ai. In

general, we will denote by )jal" "ak) those terms of Mi in which the

first k elements are respectively a1 , a2 , ... , ak . Clearly,

Mo- UMI. -0. ..... g-1.

There is at least one J, j = J, such that the sum U 1431) contains an

infinite number of terms. In addition, it can be seen that there is

at least one J2 such that the right side of equation

M U1. JI)- UA(IebM

contains an Infinite number of term. We continue this argument In-

definitely. Let a be the sequence

Since a E R, a is contained in one or the N. Let a be contained In

X(JI 2 "" J)" Clearly 1(J12.... J5) is the only term in the sum UN1

in which the first a symbols are Jl' 2' "'", in. Thus in the sum

t t.. b .. numb e... oIn
ther cannot be an Infinite number of term In the riht aido. This



contradiction proves the lemma.

The function p is nonnegative, defined on an algebra, countably

additive, and p(O) - 0, i.e., the function j. is by definition a measure

([39], page 34).

As we know (for example, from [39], page 59) there exists a

uniquely defined minimal a algebra 0 containing the algebra of

cylinder sets to which the measure p is uniquely extended.

We will call the sets of the a algebra 0 measurable. We call the

function f(p) measurable if it takes on real values and. if for any

real c the set of points p in which f(p) < c is measurable.

The theory of the Lebesgue integral is similar to the theory

of functions of a real variable (see [40]).

§19. A Dynamic System in a Space of Sequences of Terms

We define the family of transformations Tk, - 0, , ... In R.

Let
pm =" . S, . ....

TOp m +. +b + ...•

The transformation T is not one-to-one. The complete prelmge e of

a point p consists of the I points k1cg 2 ... Ck; k = 0, 1, ... £- 1.

Lemma 1. The measure a Is an invariant measure, i.e., the com-

plete preimage of a measurable set is measurable, and a-IN- 1Ml.

Proof. It is sufficient to show that for an elementary cylinder

set M AT-1N - pl. The complete preimage of the elementary cylinder

set Nh(I... as) consists of A disjoint elementary cylinder sets

The space R, together with the invariant measure I and the

family of transfomations TX, forms what is called a dynamic system.

A set N is called invariant if I" N - K. Sets of all sequence.:.
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that are periodic following a certain term are examples of invariant

sets.

Lemma 2. The space R cannot be represented as the sum of two

measurable invariant disjoint sets with positive measure.

Proof, We assume that we are able to represent R as the sum of

two sets without common points of positive measure, R a U1 U U2. We

let y - lLu!, 0 < n < 1. Let X(p) be the characteristic function of the

set U1 . Let any combination ei62... 8n of n terms be given and let

p ,

be some point in R. Since the sequence

£ a...,a,...

Is one of the nth-order prelmages of point p and U1 Is an Invariant

set,

z (Ba..). top) - z

The measure of the intersection of U1 with the elementary cylinder

set N(61 ... 6n) is . % p)dp. clearly

Assume a > 0 and 1 - n > a (both inequalities are strict). By a

theorem similar to the theorem on accumulation points (see (40],

page 286), the set U1 , as a set with positive measure, should have an

acoumulation point 10.

I.e., for every a > 0 it Is possible to find a 60 such that whatever

elementary cylinder set A with pA < 60 we take that oontalns the point

We take an n so large that l/n < 6, while for A we take the elementary
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cylinder set M(TIr2 ... Tn). On the one hand

on the other hand

This yields n > 1 - e, which contradicts the condition 1 - > e.

This proves the lemma.

§20. Birkhoff-Khinchin Theorem

Let R be.a set of points and p the points in R. Eet g(pR - 1) be

a normalized measure defined on a a algebra of sets 0 in R.

Let the family of transformations Tk, k-- 0, 1, 2, ... , R be

defined on itself such that for any integers k , > 0 and k2 > 0

Tp-.T(Tpp), peR.

Generally speaking, we do not assume that the generating trans-

formation T Is one-to-one. We let T-IA be the complete preimage ot

some set A.

We shall assume that the complete preimage of overy set of lies

in : and that

pT7-2A --mpA

(measure in variants).

We shall call the space R together with the measure g and the

family of transformations Tk, k o, 1, ... a dynamic system.

The set R is called Invariant if

T'Ein E.

If R cannot be represented as the sum of two disjoint sets (in

) both of positive measure, we then say that the dynamlc system is

indecomoosable (or ergodic).

We shall need to use the so-called Birkhoff-Khinchin ergodic

theorem. This theorem was proved by Birkhotf [41] and Khinchin,40t4.:
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for the case of one-to-one transformations. F. Riez* [433 has extended

this theorem to transformations that are not one-to-one. The proof

given in [433 is concise and I shall therefore give It here in its

entirety.

Theorem (part 1). Let j. be an Invariant measure. Let there be a

function T(p) that is absolutely, summable over the measure u. (i.e.,

the integral 119(pgdp exists). Then the limit

lia (i') + v (Tp) +... + 9 (T'p- Jp)

S(p) p T j(p) dp.

exists for nearly all points p R (with respect to the measure I).

Proof. We let

lim 9 (P) + 9(rp) + .. + 9 (74-4p) ( ,

TI- P) + 9 (701+ ..+ 7 (7 4p).,(.

Consider a set of Intervals on the real line with rational end

points Janfn) (this is a denumerable set). Consider the set Vn of

points p such that for these points

If IVn- 0 (n - 1, 2...), then letting V -U Vn we find that &V - 0.
x1

If pE R \V e it is Impossible to insert any interval with rational

end points such as *,(P) - #*(p) between #,(p) and #*(p). Thus to

prove the theorem, we must assume the existence of the set Vn (i.e.,

of the two rational numbers % and is.) such that O&Vn - 0. and this

must lead to a contradiction. Let us make a change in notations we

shall write, in place of Vn, andaand inplaceofa n and An. hus

S is the set with p3 > 0 for the points of which

11r ( + <e<F< Tm +

We note that the set S is an invariant set. In fact, let pIE C4,
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then p - Tp'1E S and

n a i n- i

lim + ip' + 11 IT (..± ., p) + " "+ 9 -p C,

+ 9 (rv). + 9 r-4,') .m ,(p)+... +qTr'-)
n a."I

We shall later require the following lemma:

Lemma. Let n real numbers al, a2 , ... , an and an Integer m < n be

given. Let us consider all sums formed by sequences of numbers having

a number of terms less than or equal to m

ah+ al+ 1 +... + at,

that are greater than zero. We shall say that the numbers In our se-

quence ak are selected if they figure in at least one of these sums

as the first term. The sum of the selected numbers will be greater

than zero.

Proof. Let ak, be the smallest selected number. Let ak + ... +

+ a1  be the shortest positive sum beginning with ak . Then all of its

terms will be selected numbers, e.g.: a + ... + a1  > 0. In fact, if%1 a . + ..T. !azz >o t 'n ta
a + ... + a < O, then since akl + ... +a > It follows that

akl + ... + a lIl > 0, which contradicts the assumption that % +

* ... + a1 is the shortest positive sum beginning with ak . Let
. 2-1

*k2 be the smallest selected number larger than 1, and lot sk + ... +

+ a1  be the shortest positive sum beginning with ak. It may be seen

that all of the terms of this sum are selected numbers. In this manner,

we can find all the selected numbers. Their sum will equal

I

This sum is positive since ever7 ak + + ai > 0. The le Is

proved.

If p 3 there exists an n such that
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(p)' (7p) .. + '"i,) .

or

We let I stand for the smallest of these values of n; 1 - l(p). We

let S(m) be the set ot points PE S tor which 1(p) < m. Olearly
Sm)C S(m+l) C elm+2).., and

lir S")S.

We take some m and take as the sequence in the lema a sequence of

n + in numbers (we use n + m in place of n)

9(p)-p. f(rp)-F; .. T+-p-p

We now take for every p E S the sum of the selected numbers

,,()11- ) + ak'(y(lTp-p)+ +... + ,.+. p) ((a,+--p)-- I)>o,

where gi(p) Is either 0 or 1 (1 - 1, 2, ..., n + n). Integrating

over the set S, we find
a.o.

where Sk designates the set of those pE S for which v(T"lp) - 13 is

a selected number. We note that 3 - $( M) . Moreover, when k < n,

Tk - I and Sk T- Sk-I (kk 2). In fact, let pE Sk; then there

is an 1 < a such that

but

Cnsequently Tp E I (we do not leave 3, sinoe S is lnvariant).

Thus TSkC Sk.I. Moreover, let p' 3b_.. We take an preinae.

j ot point p's p, - T9, p E ek-1.

But since p' = Tp this expression will equal
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y(T*1p).+ If (Thp) +... +9 (P-14,0p),

106PE . k . Thus T-SkC Sk .  s together with TSkC Sk_ ,

proves the statement.

In view of this statement and the invariance of the measure iL we

obtain

k4+

We may write (in view of S((T1p)4p)dpt- jIip-)--PI4,7j) the inequality

jd&O.

Thus (as n approaches infinity)

But since 
.im (m) - ,

i.e.,

y(9) dIL pS.

Moreover, If pE 3 , there exists an n such that..-

I'

*?(PO +B-(p) +a- 104-1p)>

Repeating the entire argument we obtain

i.e., W S > WS.

Since V >0, 0 > p, which cOntradicts the assuvtion that p > c.

The theurem is proved.
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We lot

4(p) -Hln (P)+ T+... VAT'I")

The function *(p) is defined nearly everywhere on R. We note that the

function #(p) is absolutely sumnable with respect to the measure iL.

In fact,

(this last by the Invariance of the measure). Prom this and from

Fatou's theorem ([40], page 155) it follows that i1# )ldp exists.

Prom this we conclude that #(p) is finite almost everywhere.

Let us prove a lemma.

Lemma. For any a > 0, a 6 can be found such that for any set A

with 0 < 6 and for anyn > 1

j a-&

Proof.

A h..
4 2v P*,P a I q(pj

Let -'kA be the complete lckth-ozrder premage of set A. Making a change

In variables, we obtain

peYcA - iA. Since the function 9(p) is absolutely suemable, for g > 0

the*re exists a 6 > 0 such that as soon as p 38, V,1 d#<6 NMkIng

use of this fact, we find that

The lemma is proven. We also note that by Vatou's thearm, it will

also be true that
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Let us prove the last assertion of the theorem. We have

We set g > 0 and. for the number s and the function qp(p) we select a

6 in accordance with the lemma. On the basis of the Lebesgue theorem

(40], page 106) for the numbers e/3 and 6 there exists a no(e/3, 6)

such that for n > n o

For n > no we evaluate the difference:

-L-t

)+ "T P) ja< + I -*(+L

(the first Inequality is obtained from the construction of the

second is a consequence of the lern, and the third is obtained from

the lema). Thus

but

Siee the complete preiage (of any order) of R Is R itself

Hence
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The theorem is proved.

Theorem (part 2). If a dynamic system is indecomposable with

respect to a measure p then for nearly all points p E R (with respect
to the measure p.)

11.,

Proof. It is sufficient to show that #(p) is constant almost

everywhere. In fact, let #(p) - c nearly everywhere; then by the first

part of the theorem: c dj. \,(p)d.

c-&R S(p) dp.

But i.R - 1. Thus t(p)-- (p)d, which we also need.

We shall prove that #(p) is constant nearly everywhere. We let M

be the upper bound on the function #(p) calculated with an accuracy

of up to the set of measure zero, i.e., Pzp(*(p) > N) - 0, while for

any g > 0 pEp(*(p) > X - g) > 0, we let m be the lower bound on the

function t(p), calculated with an accuracy of up to the set of measure

zero. We must show that M - m. We assume that N , m, i.e., let there

be an a such that m < a < M. By definition of M, MpL30(P) > a) > 0

(the inequality is strict) and by the definition of m

. (R\EA((p)>a))-peED(*f(<a)>O.

But the set p(#(p) >'a) and Bp(#(p)< a) is Invariant. This follow*

from the fact that the sums

and

MF ) + rr +...- + r-r

differ by an expression of the order of 0(1/n) for nearly all p. Thus

R has been decomposed into the sum of two Invariant sets of positive

measure, ;:hich contradicts the hypothesis.

.66.



r7
-4

§21. Proof of the Normality Criterion for Sequences of ymbols on

the Basis or tne Birknorr Theorem

We shall now prove the normality of sequences of symbols by the

following method, based on the Birkhoff theorem. We note that the

idea underlying the proof of §4 also underlies this proof. Here the

Birkhoff theorem plays a role similar to that played by Lemma 1, §4.

We shall prove a lemma similar to the Kelly lemma (40], page 240).

Lemma 1. Let there be given some fixed sequence made up of the

symbols 0, 1, ... , g - 1,

* -- l ..

There exists a sequence of natural numbers

such that for any elementary cylinder set the limit

Dii a).'

exists.

Proof. We may label all of the elementary cylinder sets a,' A2,

The numbers N,(A)/n lie on the segment (01]. Since these numbers

form a bounded set, we can find a subsequence of numbers such that

lim Nni, (Ai)/nii exists; we call this limit U1" We select the *on-

vergent sequence Nn (&2 )/n21 , whose limit we designate IZA 2 , from the

set of numbers Nn (&)/n2L). We note that Is .M.;4 We con-

tinue to choose sequences (nlm| such that

Um-- -"le I-I. 2,....

We now put together a diagonal sequenee of numbers a1 a ln,# ne
2, .... It is clear that thn M-101) for any j.

We note that V - 1. We note further that we can extend the

function to all cylinder sets and that this function will po-sewzi
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complete additivity. In short, we can introduce the measure i into

R.

Let us now prove the criteria. Let the sequence

a aL, a,, a3,... (1)

s~tIsfy the hypothesis of the criterion.

We assume that this sequence is not normal. This means that there

exists an elementary cylinder set % and a sequence of integers n1 ,

n2 , 0..$ nk , %.. and a number a > 0 such that

N.$t)

IS* Pa

By Lemma 1 of this section, there exists a sequence nk such that

for any cylinder set a

1rn
I .

exists. Thus,

x <.
XA X- Xl

A=T'A,

I.e., I is an Invariant normalized measure in a dynamic syitem.

We let * be the set of all sequences p for which

By the Birkhoff theorem (part two) we obtain

when we take the characteristic function of the set I for y(p) and

make use of the indecomposability with respect to the measure g.

This has as Its consequence

MI.

in fact, let C01 be the complement of ' in R. This will be the

measurable set g - 0, since as Is required by the criterion
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0 <.E , < COM*-O..

We once again make use of the Birkhoff theorem. The lemma

exists for almost all p with respect to the measure TE. But

and this .means that

for almost all p with respect to the measure i.

We make use of the Lebes~ie theorem ([.40], pages 106 and 108)

(if a functional sequence converges nearly everywhere with respect

to the measure a, it will then also converge with respect to the'

measure.Vi), applying it to the sequence of functions

Z()+Z (rp)+ ..+ ,x p)N ." , n
, , s,.l, 2,.. .

where X(p) is a characteristic function of the set I Applying another

of the Lebesgue theorems ([0], page 139) to this functional sequence

and remembering that NA5Pj!?< and diq--1 , we conclude that:

But by the invariance of ;

Thus, It-

In particular, this means that

TMar

But
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The contradiction proves the criterion.

§22. Dynamic System Corresponding to the Simplest Markov Chain

Let there be given two nonnegative numbers pO and p, which we

shall call "Initial probabilities," and four nonnegative numbers,

which we shall oall transition probabilities

(: Pa).
where

Pe.+Pgxu 1.

We shall assume that the stationarity conditions

PMS-Ps6+PP".

API-Pj1+PtPW

are valid (it is clear from this that PO + P1 " 1).

We shall construct a dynamic system similar to that constructed

by us in §19.

The space R is a space of Infinite sequences made up of the

symbols 0 and 1. We shall call an elementary cylinder set a subset

of R If some number of the first sTmbols among its elements are fixed.

We shall use M( 1 ... 6.) to designate an elementary cylinder set.

We introduce a function ;& defined on elementary cylinder sets

2. PRM- OA.A~,*s

As in 618, we Introduce the notion of a cylinder set and prove

that cylinder sets form an algebra. In the analog of Lem 2 18,-
the proof of the third point is more cumbersome: those y1... YN

generated in M intersect the MA(6L)... 6)). They are elementary
IIcylnder sets of the forme- 6(i2),, 6 (i) - .,

V' P 4P .PP..
%-,.o - '. o -s4S4
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1 1

p MP M M..O iq.-OqlJsM

.pcj Pj ,(11 . .. p , - PM 8V . 0-

(since P -)

We now construct the measure i on the minimum a algebra that

contains the class of cylinder sets.

We define the family of transformations Tk, k- O , ... in

R. If p - sce2..., then

Clearly

7Ah T(7*pA

for any integers k1 and > 0. The transformation T is not one-to-one.

Lmma 1. The measure L is an Invariant measur.

Proof. The complet. preimage of the set M(61... 6s) consists of

ml(0l... as) nd N2(161... 68). N and M2 are disjoint

-Ppvh... P.#-pm

(in v:Lw of the fact that PIoP061 + P02P16, p 1 .161).

Leoa 2. Let the elements of the matrix(fOo ROl) be pitive

The space R cannot be repyesented as the sum of two invariant disjoint

sets, both with positive measure, R - u1.U U2 .

Proof. Let us assume that we are able to represent R an the sum

of two Invariant sets with positive measure, not having common points,

R - 01U u. We loet I - iU1 0 < n < 1. Lt X(p) be the characteris-

tic function of set U1 . Let therebe a combination e192... an and let

S6162... be some point in R. Since the sequence
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is one of the nth-order preimages 0o point j, and U1 is an invariant

set,

.('1%.. $as) -x(

The measure of the Intersection or Ul and the elementary cylinder

set M(81 92... En) will equal

i (4) d'.

Let T' be a transformation mapping R into M( 1 2 ... gn). Carrying out

the inverse transformation we obtain

where 6i sn the first symbol of a. Thus

we let'

III- 1(a)4:. ve jx.)44

ll and 2 are independent of n and M( l ... 6n)
4jd,,-s . 4A.

31noe n. + n2 - n < PO + P1  1, one of the inequilitles PO an

2 Pl Is stripped. Thus

(th. inequality Is stripped). Thus

P , n mo( ... %)-Pm9... ,,

where is strictly less than some p < I and Is irdependent of n

and ca6i). By the hypothesis of the lern (s 1 ... %n) 0.

Thus
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ow n(a, s... n))

We assume that a > 0 and I - p > c. In analogy with the accumu-

lation-point theorem, the set U1 , being a set of positive measure,

should have an accuMulation point 0,

i.e., for any e > 0 it is possible to find a 60 such that for any

elementary cylinder set A containing 0 for which pA < A 0

p(Us r)A)

(here we make use of the restriction that the matrix elements be

positive). We choose an n so large that for any cylinder set 1 - (c1"""

Cn) , I1 S 60, and we take the set A w M1(TIT2 .,. fn) for A. We then

have

F(u, n A)<wA

and

This yields p > 1 - s, which contradicts the hypothesis. This means

that our assumption was erroneous, and the lmrns Is proved.

123. Markov-Normal Sequences

Let a be a natural number. Consider any u-tuple made up of the

symbols 0 and 1, A - (6162 *... 68). The quantity p p616... p60..6s

will be designated as pA.

Let there be an infinite sequence made up of symbols 0 and 1

As previously, we form for any natural number a the sequence of

tuples

M - .. (2)

We let NK(ct, &), or simply Np(), stand for the number of times a

oombination a appears prior to the Pth elemnt of Sequence (2).
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Definition. We call the sequence of symbols (1) Markov-normal

if for any natural number s and any combination A of s terms the

limit

tmNP (A.)
P-0

exists.

Theorem. Let there be a sequence

a^..(3)
such that there exists a constant C such that for any s and any oom-

bination A5

Then Sequence (3) is Markov-normal.

The rest of the proof follows without changing the proof of the

theorem In S21.

124 . Construction of Markov-Normal Sequence of Symbols

The construction of a Markov-normal sequence of symbols given

here Is taken from (21).

Lot there be a sequence of integers

2 1 CJ....

for which

and for sequences of positive integers c4,g), 01) j 10r fo11r
which the relationship

holde, while when r-..,

:c,- each r, we consider the auxiliary Harkov chains having

-74-



transition probabilities

a* I

and initial probabilities that satisfy the conditions

We lot P (r) be the corresponding measure. For any combination a
pfrA-wF+o(i), r--. .

We let ar be the sequence of all r-digit numbers in the binary

system (including numbers beginning with zero); each number a will be

repeated (a () + ,(r) r-l (r)A) times. When the r-digit numbers are10 l1 r P

written, we shall separate them by apostrophes.

Theorem. The sequence of symbols written symbolically as

Is Markov-normal.

Proof. It is sufficient to show that there exists a oonstant C

that for any s > 1 and any combination As " (6162... 69) of B term

P-

We make the following definitions:

xr Is the number of symbols 0 or 1 In a r;

Sr is the sequence a132%.* or;

Xr is the number of symbols 0 or 1 In Sr,
I-i

is the number of occurrences of A. In or;

Or Is the. number of occurrences of As In i r

Let us evaluate or . We know that each r-digit number contains

rsyinbola and is repeated (0(r) +., ) 1,(r) A r tims. Thsmen10 01
that
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xr r (al,)

A,
(the sum is taken over all combinations Ar and thus 1&

tmA,-d).

We let E2,,.) be the number of sequences in which we find

in the ilgt place, g1 in the I2nd place, eto. Since I(r) is ans1  ,e2

invariant measure, when i. > 1

,.,E~i--l %-- ...., . h-- %,8 .I.. .al "' i

A combination A. may enter into ar either separated or not

separated by apostrophes. If r < a, As cannot enter into ar unseparated.

Where r > s, A. enters into sr undivided exactly -s+ls~a + )

times. In fact, there are exactly r - s + 1 ways in which A, can occupy

an unseparated position in an r-digit number: The first term A. may

coincide with the first, second, ... (r - s + lI)th symbol of the r-

digit number. ixing the kth position, we find that there exist In

p(,+ .. +,- ,) k+I'- + 8 -I

r-digit numbers in which Ac san occupy this position.

Thus As Is contained undivided In sr exaetly(r-+l)K' +f

tUies, ad or contains (W+4v)K' apostrophes. A given apostrophe

cannot separate more than a different As . Thus A. enters undivided into

no more than times (since r Increases, sm

involv, a constant).

Thus

Since

then
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Moreover

N o,-, ,

X- I X -I7 , -_I tr, 7(1w

since P, if-If~. >n 0 (str'ictly.'),

r- - +'MC-...

The criterion Is satisfied and the theor'em proven.

125. The Dynamic Systm In the Theory o1 Continued Fractions

We assume the well-known theory ot continued fractions (soe [4]).
We take tor R the set of infinite sequences o natural numbers.

Let

be some infinite sequence o natural numbem. We oopare the natural

irrational number

with tlM5a sequence. This number liqs withinithe segment [013.

Let B be scum set o sequences, and 21 the corresponding set ( "el,, ...4
Irrational numbers am the interval 101]. We will let .
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the set of sequences defined by the fact that their elements contain

ifin the lst position, g,2 **,In the '2nd Position' &Ad g: in
the st poItion. If B (12-::-:,) then It oansistp of irrational numbers

from the interval whr P"q. sopW4 rete et
to-last and last convergent$ or

[the fact that the interval Is written as As'~L may lead to the

Incorrect assumption that It Is always the case that
actually, the direction of the inequality depends on the parity of a].

We call the set Z measurable :if the set go is measurable. We use

mes I to denote the Lebese~u measure of set 21 WeV let 0i stand for

the number

clearly,

Moreover,, it Is clear that

We define in R the family of traf l'tows (e - 0k 1, Is 'as

Ufp= a 01003 ... * then X - QW-Sbe3"'
Clearly

We let V'3 I be the olete prelmege of set 1 for the taso Inti

.UeIna.7II

Leim 1. Tht measure a Is an invaiant mWs" n yai
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system.

Proof. We need to prove that I.LTE - ILE.

It clearly is sufficient to show that this relationship is true

of the set E for which the corresponding set 31 is a set of irrational

numbers from the segment [Oc] (Fig. 2). The complete preimage of the

interval (Oa), as we can see from the drawing, consists of the in-

finite number of Intervals

19 The equation

S -

I ds

prove the lema.
A special ce of this Iowa Is

Fig. 2 represented by the statement: when I, > 1

PE(til *,... ),

I I amg~ 01(1+)-4

E, .. ;

The lem given below was proved by K. Moopp [45].

Lem 2. The space R cannot be represented as the sum of two

Invariant sets with positive measure.

Proof. In view of Inequality (1) we need to establish that R

cannot be represented as the sun of two invariant sets of positive

Lebesgue measure. Let us assume that we are able to do this: R - t71 U

UU 2 . Then the set of irrational iumbers within the interval 101] is

decoposed into the sum of two sete U UU. Let s ule U. The c

up, being a set of positive measure, has an accumulation point
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i.e., for (1 -)/(l + n) > 0 there exists a 6 such that if 1'

is an interval containing O0 with mes 1 < 6, then

mso~ AU)

Let

We take for 3' the interval consisting of numbers that have the first

Incomplete portions 0102. .. an of length less than 6. Let this be

the nterval (P-,+ Li). We lot X(x) be the characteristic function

of the set U1.

The number

I=
0_ + 6

+

Is one of the prelasges of the number x. Thus

It ls clear that m('fl- m),( u T. l. h.us

-q44+q 4 Wx - qs 6ii-+ q+~~

Since (quix + qn)i noreases as x goes up, the Interval an onl

iwrease If we assume that 9, is the interval (Oq).
mr n u' d

< 46 On-& +..80
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which contradicts m )> The lemma is proved.

§26. Normal Continued Fraction

Let s be a natural number. Consider any a-tuple consisting of

natural numbers A - (6162... 6.). Let A' be the set of all irrational

numbers in the interval (01], and let the beginning of their decom-

position into a continued fraction be

+F.

We define

pA - pA'-.1+r

Let there be an infinite sequence consisting of the natural numbers

A(1)

We take any natural number s and write Sequence (1) as a caterpillar:

( ... ... 0...C84 ... (€ ... ... (2)

We let Np(A) denote the number of times the combination A - (6162... 8)

Is encountered prior to the Pth position of Sequence (2).

Definition. We call the sequence of natural numbers (1) a normal

continued fraction if for any natural number a and any combination

A - (61... 6.) of! term composed of natural numbers the limiting

relationship

holds.

We shall need the following theorem.

Theorem. Let there be the sequence

ees...- (3)
such tlL there exists a constant C such that for any s and any
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combination A3 = (61...6.) of s terms

Then Sequence (3) is a normal continued fraction.

Proof. Let (4) be valid. Since

the relationship

holds.

We call the set of sequences whose first s terms are fixed an

elementary cylinder set. The set of all elementary cylinder sets is

denumerable. We can repeat the proof used for the theorem of 121.

627. Construction of a Normal Continued Fraction

We present here the construction of a normal continued fraction

due to A.G. Postnikov and I.I. Pyatetskly [21].

We shall need the following notation:

Let sl, 82*** be groups of natural numbers

Sam un... ems so Mn .. o~t....-

We let

M Sass,...

be a sequence of natural numbers

*m -- e... Caa.... ....
u . . . .

We Introduce the notation: 1, r are natural numbers 1-. and

r-, but r/1-.O; 5 Q ) Is a row consisting of all r-digIt groups
ala 2.., ar where 1 < a ,  ... I < ja r :S (al , a 2 0 ... ,0 ar ame

natural numbers);, here a 1 2 ... ar is repeated --v 12 "...',,v
times. These r-digit groups are separated from each other by apos-

trophes. The order of these groups within the row is uni ortant.

We note that
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r

i.e., the combination a1 a2 *.. ar is actually found insW). As aInr
matter of fact,

is :aPvtuaE( fo.r OF +P *r '

since It to easily shown by Induction that

q,(, ,,q,,-< ,(W .

Moreover, we let be the number of groups in a

It Is clear that
a aI'M Y ... Y; 'PW.-, Mr 1 U... j

,nP*L .,...

"12

rAt UU) be the oopwnlmnt of the set

2~**2U ...U E

It is clear that

G o (fit 2, ( l i $

U U .U U 23

.. L , ,.,-,-,, hl .t,&-11

Since (see E441, page 78)

and, clearly,

,.0., ot-);
then

.,mu.o(++,_,ma(J)+ i _ ,
.- ,I fr 1../,.+
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But

1,1 <'l(,) '  mm( ,....,, -MLoP

since r/- 0. Clearly

Therefore

! )- 1 -" )-+oe(,)

We thus obtain

,11- 2w'tv + @(pmqp

Iat A.- be the number of numbers in - Zt is easy to see that

- ry )  amd it follows from this that

Next lot

where 1 < , 3 - 1, 2, ... p (the top and bottom inequalities

cannot be realized), ) and p am flxed.

We let Q4) be the number that shows how meny times A is found

In 6Q1) The combination A my be containe- In s41) separated or not

separated by apostrophes; there are r - p + I ways In which A can be

oontaned In any group without separation: the first torm of A may

ooinolde with the first, second, ... , (r - p + l)th term at the

group. Thus the quantity sought will equal

I +

., et ... "l A
+ .2EI" -''- "l

... + . [2vl aF. fh:...'P, +J...



a £.,,.,.,,,,(E 1 2... pp.., + '...,r + ..,

+ <

.. 1 *" I... -)

+ .O(rP 2V+1tV 12 ... +• -(3 ...I + 

" m ( ) a

< 2!'+lp (PtE, ... P E + .. +...r :+rt

-t~ ~ ~ 9 ,- .. e+...,

Because of the .hvaiance at the measure
12 ... s

PE( '""' I ) .... PL(

Thus the quantity solved will be less than or equal to

., (":::IN) +o,,

• .%

Let us determine how many times a my be contained divided In

or;- ,.There are Y ,() - (1) /r apostrophes in s(). Any given apostrophe
cannot separate more than p different groups. We shall thus have at

x"
most .. p-o(Z n) o.:.- l.tie8.

Lot I 1, 2... We cet r .in1+ 1. Clely 0 when

I- , .: *' note OW:) sinply by s(-) and consider the sequence"

We shall show that this Is a normal continued ftraction.
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We introduce the notation:

EQ-) In the nmboir of symbols ina()

g'-')Is the number or appearances of A - A In l)

SQl) is the row 8(1)3(2).-..l
X.)is the number of terms inSM

Clearly

-V MxWO + gW f. + XU).

G.)Is the number of occurrences of a in S)

Since

we obtain

Let X(.!) < P <X(i.! We have:

i~~cU~ma2.~+cuu
XVI

aMd since

then

Z0O

MbUD
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F I0

The criterion for a normal continued fraction In satisfied.



NOTES
1 page 4. Relchenbach (46] deals with this subject.

Copeland r47] gives some Idea of the Importance . .

numbers for problems in which the frequency Is given geometrically.

There is a summary of the application of random arid pseudorandom

numbers given In 148]. This class of problems is also referred to in

[49].
2 page 16. A.G. Postnikov 152] put Champernowne's construction

Into geometric form and constructed a complex number a + 1i such that

the fractions {(a + 01)(a + bl)X), x - 1, 2, 3..., are uniformly dis-

tributed (here a + bi is the fixed Gaussian Integer, differing from

.a, 1# 1, -i). A.M. Polosuyev E53] also developed a method for the

case in which there are restrictions on an &-order Integer matrix

A, and constructed a vector N such that the fractions (WFx), x - 1,

2, 3..., are uniformly distributed In a unit cube In n-dimensional

space.

Normal periodic system have been used to obtain very good re-

maInder terms in a problem dealing with the uniform distribution

of fractional portions of an exponential funotion. L.M. Korobov E36]

constructed a system of real numbers al ', as such that for any

a and any system of natural numbers larger than one, , ... , g

the condition

N(n0Ps A+O(P le)

(the constant In "0" depends on 4) will hold for the number of



occurrences of point ((axga)... (a s ) within any parallelepiped a

lying within a unit cube with sides parallel to the coordinate axes.

A.G. Postnikov [54] has constructed a real number a for which

the condition

Np(A) mPrma A+0 ()log boP)

holds.

N.M. Korobov has solved several problems in which the problem of

constructing numbers a for which fractions (a X), x - 1, 2, ... , are

uniformly distributed occurs as a special case [55-57]. The methods

of proof in these papers are based on using evaluations of various

types of trigonometric sums. A study of A.M. Polosuyev dealt with a

generalization of one of the results [58].

We should take note of N.M. Korobov's study evaluating the sums

of fractional portions of an exponential function [59]. Finally,

N.M. Korobov has Investigated a solution to inhomogeneous Diophantine

inequalities with exponential functions (36].

3 page 59 We shall apply the Birkhoff-~hnchin theorem to a

dynamic system In a space of sequences of symbols. In this problem,

we can reduce the case of transformations that are not one-to-one to

transformations that are one-to-one, thus eliminating the need for

using the Rel: theorem.

We compare with each infinity in the sequence of real numbers

made up of the symbols 0 and 1,

with the sequence, Infinite in both virections,

in whlch

-89 -



We define a group of one-to-one transformations on the set of se-

quences of symbols, infinite in both directions, by means of the

equation

Th(...-1 ts .. )- .. - s s .. •,

k - ... -1, O, 1, 2...* An investigation of dynamic systems in a

space of sequences of symbols infinite in one direction Is reduced

to studying a dynamic system in a space of sequences of symbols in-

finite in both directions.
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